Thursday, September 21, 2006

Cycloaddition Functionalizations to Preserve or Control the Conductance of Carbon Nanotubes

by Young-Su Lee & Nicola Marzari Physical Review Letters, 11 Sep 2006 We identify a class of covalent functionalizations that preserve or control the conductance of single-walled metallic carbon nanotubes. [2+1] cycloadditions can induce bond cleaving between adjacent sidewall carbons, recovering in the process the sp2 hybridization and the ideal conductance of the pristine tubes. This is radically at variance with the damage permanently induced by other common ligands, where a single covalent bond is formed with a sidewall carbon. Chirality, curvature, and chemistry determine bond cleaving, and in turn the electrical transport properties of a functionalized tube. A well-defined range of diameters can be found for which certain addends exhibit a bistable state, where the opening or closing of the sidewall bond, accompanied by a switch in the conductance, could be directed with chemical, optical, or thermal means. Read more